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L1 regularization

Challenges posed by L1 Regularization: non-differentiability,
essentially a constrained problem

Weakness of typical monotonic decreasing algorithm
Steepest Descent: slow convergence, exact line search
Newton Type: computational cost

Non-monotone algorithm: simplicity in stepsize calculation,
e.g., Barzilai-Borwein (BB) method [1] for quadratic
minimization
Challenges for BB-type gradient based algorithm: divergence
with L1 penalty added
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Motivations

Deal with divergence of BB-type Method
Affine Scaling: handle L1-norm, avoid non-differentiable
points
Globalization: line search and trust region to ensure
convergence

KKT conditions for minx∈Rn f (x) +‖x‖1:

D (x) · (∇f (x) + sign (x)) = 0

where

D (x)i ,i :=

{
1 |(∇f (x))i |> 1
|xi | |(∇f (x))i | ≤ 1
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Challenges and Solutions

Challenges for Non-monotone Gradient Based Algorithm
What search direction?
What stepsize along the search direction?
What type of line search to ensure convergence?

Solutions
Search direction: Scaled Steepest Descent Direction
Stepsize: Safeguarded Barzilai-Borwein Stepsize
Line Search: Adaptive Line Search with Non-monotone
Armijo-Rule check

7/29



institution-logo

Background
Motivations

Our Affine Scaling Gradient Based Algorithm
Convergence Proof for the Trust Region Method [3]

Concluding Remarks

Challenges and Solutions

Challenges for Non-monotone Gradient Based Algorithm
What search direction?
What stepsize along the search direction?
What type of line search to ensure convergence?

Solutions
Search direction: Scaled Steepest Descent Direction
Stepsize: Safeguarded Barzilai-Borwein Stepsize
Line Search: Adaptive Line Search with Non-monotone
Armijo-Rule check

7/29



institution-logo

Background
Motivations

Our Affine Scaling Gradient Based Algorithm
Convergence Proof for the Trust Region Method [3]

Concluding Remarks

Search Direction: Scaling Matrix

We use the new scaling matrix

D (x) := diag (v (x))

where

(v (x))i :=

{
1 |(∇f (x))i |> 1
min{|xi | ,1} |(∇f (x))i | ≤ 1

By doing so, we avoid adding scaling effect when the iterate is not
close to the optimal solution yet. We take −Dkgk as the search
direction.

8/29



institution-logo

Background
Motivations

Our Affine Scaling Gradient Based Algorithm
Convergence Proof for the Trust Region Method [3]

Concluding Remarks

Search Direction: Scaling Matrix

We use the new scaling matrix

D (x) := diag (v (x))

where

(v (x))i :=

{
1 |(∇f (x))i |> 1
min{|xi | ,1} |(∇f (x))i | ≤ 1

By doing so, we avoid adding scaling effect when the iterate is not
close to the optimal solution yet. We take −Dkgk as the search
direction.

8/29



institution-logo

Background
Motivations

Our Affine Scaling Gradient Based Algorithm
Convergence Proof for the Trust Region Method [3]

Concluding Remarks

Stepsize: BB-type Stepsize

BB-type stepsize

α
BB1
k :=

〈Dk∆xk ,Dk∆xk〉
〈Dk∆xk ,Dk∆gk〉

which is derived as the solution to

min
α∈Rn

∥∥∥∥ 1α Dk∆xk −Dk∆gk

∥∥∥∥2

αBB1
k should be in [αmin,αmax] where 0< αmin < 1< αmax and the

iterates are updated by xk+1 = xk −αBB
k Dkgk
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Stepsize: Safeguard Mechanism

Observations

Stepsize liminfk→∞ αBB
k > 0: otherwise may stop at

non-optimal solution

Negative Stepsize: Use Rayleigh Quotient type stepsize

〈Dk∆xk ,Dk∆xk〉
〈Dk∆xk ,DkH∆xk〉

Upper bound on the stepsize: 1< αmax since unit step is
effective when L1 term dominates
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Line Search: Non-monotone Armijo-Rule Condition Check

Shrinking factor θ introduced to meet the decrease requirement
relative to the reference function value

h
(
xk −θα

BB
k Dkgk

)
≤ hmax + γθ

〈
gk ,−α

BB
k Dkgk

〉
where

hmax := max
{
h
(
xk−j

)
|0≤ j ≤min{k ,M−1}

}
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Our Affine Scaling Gradient Based Algorithm
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Performance Evaluation

This SG algorithm only requires the first-order information and it
converges fast in all 3 scenarios where the quadratic term is
negligible (ρ ≤ 1), comparable (ρ ≈ 10), dominant (ρ ≥ 100). 50
test problems for each ρ .

ρ = 0.1 ρ = 1 ρ = 10 ρ = 100

SD 163/0.0% 158/0.0% 285/0.0% 345/16%

SSD 160/100% 126/100% 160/100% 300/100%

Table: Average Number of Iterations / Success Rate for SD and SSD direction
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The SPG Method
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Performance Comparison

1 2 3 4 5 6 7 8 9 Average #

SPG 181 257 212 202 233 169 234 227 294 224

SG 329 258 258 279 449 321 428 284 325 326

Table: Number of Iterations for SPG and SG Method, for 9 problems that SPG
is successful

We run 50 test cases and 41 out of 50 failed to converge for the
SPG method.
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Performance Comparison Cont.

Figure: Trajectory of Objective Values for Test # 20, SG vs. SPG Method
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Definitions

For simplicity, we define our scaling matrix as D (x) := diag (v (x)) where

(v (x))i :=

{
1 i = j∗ := argmaxj∈{1,··· ,n}∧|(∇f (x))j |>1(

∣∣∣(∇f (x))j

∣∣∣)
|xi | otherwise

and the piecewise quadratic approximation model as

φk (d) = ∇f (xk)T d +‖xk +d‖1−‖xk‖1 +
1
2
dT Mkd

and the optimal decrease along dk as

φ
∗
k [dk ] := min

{
φk (αdk) :

∥∥∥∥αD−
1
2

k dk

∥∥∥∥
2
≤∆k ,0≤ α ≤ β

2
k

}
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Trust Region Method: Part I - Step Calculation
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Trust Region Algorithm: Part II - Region Size Update

19/29



institution-logo

Background
Motivations

Our Affine Scaling Gradient Based Algorithm
Convergence Proof for the Trust Region Method [3]

Concluding Remarks

Proof Highlights

“The basic idea about the proof is that if the necessary optimality
condition is violated, we can show that our algorithm will
asymptotically achieve a sufficient decrease, which is bounded away
from zero. Thus the objective value will go down to −∞. This will
lead to the contradiction of our Assumption 1 that the level set of
f (x) +‖x‖1 is compact over F .”
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Assumptions

Assumption 1: Given an initial point x0 ∈ Rn and assume that
(x0)i 6= 0,∀i ∈ {1, · · · ,n}, the level set F := {x : h (x)≤ h (x0)} is
compact.
Assumption 2:

{
Bk = ∇2f (xk)

}
is bounded. That is, there exists a

positive scalar χB such that ‖Bk‖ ≤ χB ,∀k .
Assumption 3: There exists a positive scalar χf such that
‖∇f (x)‖

∞
< χf ,∀x ∈F .

Assumption 4: Assume that

φ (dk) < βgφ ∗k [−Dkgk ] ,
∥∥∥D− 1

2
k dk

∥∥∥
2
≤∆k , xk +dk ∈ dif (F ) where

βg > 0.
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Lemma 4.1

Corollary
Assume assumption 1−3 hold and dk satisfies assumption 4, let χ be the minimum

χ

(
µk ,∆k ,β

i∗
k

)
= min


〈
ĝ i∗
k , ĝ0k

〉2
µk
∥∥ĝ0k ∥∥2 ,

(
∆k −β

i∗
k

) 〈ĝ i∗
k , ĝ0k

〉
∥∥ĝ0k ∥∥ ,

(
β

i∗+1
k −β

i∗
k

) 〈ĝ i∗
k , ĝ0k

〉
∥∥ĝ0k ∥∥


then

−φ (dk)≥−βg φ
∗
k
[
−Dkg0k

]
≥

βg

2

 i∗

∑
j=1

(
β

j
k −β

j−1
k

) 〈ĝ j−1
k , ĝ0k

〉
∥∥ĝ0k ∥∥ + χ

(
µk ,∆k ,β

i∗
k

)
where i∗ is the last break point along direction −D

1
2
k

ĝ0
k∥∥∥ĝ0
k

∥∥∥ that is crossed, i∗ ∈ {0,1},

i.e.,
β

i∗
k := max

{
β

i
k : β

i
k < α

∗
}
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Lemma 4.3

Corollary

Assume that {∆k} is updated by above trust region update
algorithm. If ρ f

k ≥ η for sufficient large k, then {∆k} is bounded
away from zero.

This lemma provides a property of the trust region size when
asymptotically the step is always successful. This is not surprising
since we always expand the trust region when the approximation is
good by the trust region size update rule.
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Lemma 4.4

Corollary

Assume that f : Rn 7→ R is continuously differentiable on dif (F )
and assumptions 1∼ 3 hold. Assume liminfk→∞

∥∥ĝ0
k

∥∥> 0 and strict
complementarity condition holds, then there exists an ε̄ > 0 such
that

liminf
k→∞

β
i∗
k = 0

and

liminf
k→∞

〈
ĝ i
∗

k , ĝ0
k

〉∥∥ĝ0
k

∥∥ ≥ ε̄ > 0.

This lemma will be used to show that, if optimality condition
liminfk→∞

∥∥ĝ0
k

∥∥= 0 is violated, the algorithm will asymptotically
achieve a sufficient decrease which is bounded away from zero.
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Theorem 4.5

Theorem
Assume that f : Rn 7→ R is continuously differentiable on F and
assumptions 1∼ 3 hold. If {dk} generated by Algorithm 4.1
satisfies assumption 4 and at every limit point of {xk}∞

k=1, strict
complementarity holds, then

liminf
k→∞

∥∥ĝ0
k
∥∥= 0

This theorem proves that there exists a subsequence of {xk} such
that the norm of the scaled gradient is approaching zero.
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Theorem 4.6

Theorem
Assume assumption 1∼ 3 and strict complementarity condition
hold, and ∇f (x) is uniformly continuous on F . If {xk} is generated
by algorithm 4.1 and assumption 4 also holds for dk , then

lim
k→∞

∥∥ĝ0
k
∥∥= lim

k→∞

∥∥∥D 1
2
k g

0
k

∥∥∥= 0

This theorem proves that the norm of the scaled gradient for every
subsequence of {xk} is approaching zero, i.e., the affine scaling
trust region algorithm terminates with first -order necessary
optimality condition being satisfied.
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Conclusions

The scaled steepest descent method in Chapter 3 is simple,
but it may be ineffective for nonconvex and very nonlinear
problems.

If a sufficient decrease is obtained along a scaled descent
direction, it is theorized that the first order necessary
optimality condition holds.

If a sufficient decrease along the global solution to the trust
region sub-problem is derived, asymptotically speaking, the
second-order necessary optimality condition and superlinear
convergence are expected to be achieved.
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Contributions and Outlook

Contributions are two-fold
investigate an efficient non-monotone method using gradient
and appropriate affine scaling for minimizing a nonlinear
function with the L1-norm regularization
analyze and establish convergence properties of Coleman, Li
and Wang’s trust region method [3]

Outlook
solve real life volatility surface calibration problem
establish the proof of the convergence for the proposed scaled
gradient method
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For Further Reading I

Barzilai, J. and Borwein, J.M. , “Two Point Step Size Gradient
Methods,” in IMA Journal of Numerical Analysis Vol.8,
pp.141−148, 1988

T.F. Coleman and Y. Li, ”An Interior, Trust Region Approach
for Nonlinear Minimization Subject to Bounds”, SIAM Journal
on Optimization, Vol. 6. No 2, May 1996, pp. 418−445

Thomas F. Coleman, Yuying Li and Cheng Wang, “Stable Local
Volatility Function Calibration Using Kernel Splines,” in print,
2010
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