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Proof of SST=RSS+SSE

For a multivariate regression, suppose we have n observed variables y;, y,, - ¥,
predicted by n observations of k-tuple explanatory variables. Let x; ;,i € {1,---,n},j €

{1,---, k} be the i-th observation of the j-th explanatory variable.

The predicting equation for y; is given by
Yi=xi1 Pt xiz PoF+ Xk P+ 1 Bo+e i €1, n}
where ¢; is the i-th error term.

Y1 31
If we put everything in a matrix form, i.e., letY =| i [and B = [ i land X =
Yn ﬂn
X131t X1k Bo &
[ oo ‘ and B, = [ : ] and € = [ : ] (vector/matrix will be written in bold
Xn1 0 Xnk ﬁo &n

form), then we can get the predicting equation by

Y=XB+B,+ ¢
For the ordinary least squares estimation, we want to minimize sum of squared errors
SSE, that is, the objective function is €7 . If we substitute the above equation to the SSE

formula, we get the target optimization problem represented by

%}}?{‘QT& e=Y—-(XB+ By}

= %ﬂégl(y —XB—Bo)"(Y —XB - Bo)

Okay, let’s recall the first order partial derivative in a matrix form, you can expand and
verify the rules below in its scalar form.

If W is symmetric,

Rule #1: (BTX)' = B, (WX)' =W

Rule #2: (XTWX)' = 2wX
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In the special case for Rule #2 when W = I, (X7X)' = 2X

Therefore, for this continuous function of SSE, the first order necessary optimality

condition is given by(eT€)’ = 0, that is, by the chain rule,

2XT(Y —XB—Bo) =0

Bo
Actually we can combine g, with the rest of k betas as g = [ Pland Xpxgeer) =
Br
) 1x1 1 1,k
] || [ : ] [ : ] , then the objective function can be re-
1Xn1 " Xnk
written as

mﬂin{sTs: e=Y - Xp}
= mﬂin(Y - Xp)T(Y - XPB)

The optimality condition now becomes

XT(Y-XB) =0
Hence, the optimal B satisfies XY = X" X, thus we can get

B=X"X)"1XTy
and

Y =XB

where (XTX)~1XT is called the left pseudo inverse of X.
Note that for a simple regression (one explanatory variable), above reduces to

cov(x,y)

1= ar (%)

To see this, we write out the variables in their explicit form.
3’1]
Yn

Boxi = [gj] = (XTX)"XTY

1 x;

Xnx2 = [
1 x,

Y =

We get
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k..
S [
—_—

Bear in mind that we have
[a pt__ 1 [d —b]
c d ad —bcl—c a
We can get
_ XX Vi — NXi* XY _ cov(x,y)
nYx?—Nx X var(x)

B1

We now focus on proving
SST = RSS + SSE

The total sum of squares (SST) is given by
n
D G- = -D'¥-D
i=1

=YTYy + YTY — 2YTY

The sum of squared errors (SSE), a.k.a. sum of squared residuals (SSR), is given by
n
- AT -
Z(yi -3)?=(r-7) (r-7)
i=1

= (v-XxB) (¥ — XB)
=YT(Y - XB) — B"X"(Y — XB)
=YY -Y"XB
The regression sum of squares (RSS), a.k.a. explained sum of squares (ESS), is given by

DG = (-7 (F-7)

= (XB-Y) (xB-7)
_ BTXTXPR + V7Y — 287XV
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Therefore,
SST — RSS — SSE
=Y'Y + V7Y = 2YTY — Y'Y + Y'XB — BTX"XB — YTY + 2B X"Y
= 2BTXTY - 2Y'Y + YTXB — BTX"XB
where
B=X"X)"1XTy
We see that

Y'XB — B"X"XB
=Y"XB - B"(X"XB)
=Y"XB - BTX"Y
=Y"XB-Y'XB=0
It suffices to prove that
2BTXTY —2Y"Y =0
to get SST = RSS + SSE.

We may ask is this true in general??? No! But we do have assumptions when we conduct
OLS regression.
Remember the moment restriction for a simple linear OLS regression.
® E(y—bop—bx)=0
® E[x(y—bg—bx)]=0
The expected value of the error term should be zero and the error term should be

uncorrelated with the explanatory variables.

B'XTY —Y'V = —(Y - XB) V= "7 = —y&Te = 0

1
where e,; = | |.
1

If the assumption that the expected value of the residual term is zero is violated, then
SST+#RSS+SSE

Classical assumptions for regression analysis include:

4|Page


http://en.wikipedia.org/wiki/Statistical_assumption

Proof of SST=RSS+SSE Larry Li February 21, 2014

e The sample is representative of the population for the inference prediction.

e The error is a random variable with a mean of zero conditional on the explanatory
variables.

e The independent variables are measured with no error. (Note: If this is not so,
modeling may be done instead using errors-in-variables model techniques).

e The predictors are linearly independent, i.e. it is not possible to express any
predictor as a linear combination of the others.

« The errors are uncorrelated, that is, the variance—covariance matrix of the errors is
diagonal and each non-zero element is the variance of the error.

« The variance of the error is constant across observations (homoscedasticity). If
not, weighted least squares or other methods might instead be used.
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