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Abstract

This manuscript is intended for providing solutions to mobile fading channel simulations. The first part gives problem
formulation and requirements of the simulators. Section2 will give a detail description of Time-Domain and Frequency-Domain
method to simulate mobile fading channels. Section3 will present the main steps in the simulation and the choices of key
parameters. Section4 shows the simulation and verification results based on theory. In the final part, a conclusion will be drawn.
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I. SIMULATION REQUIREMENTS

L AND mobile fading channel simulator- In this problem, I will create a computer program to generate realizations of a
Rayleigh fading process based on the frequency domain method and time domain method described in the class. In order

to test the simulation program, generate a realization of a fading process where the maximum Doppler rate is100Hz. Then
the following results will be presented:

a) Plot the power spectral density of the fading signal.
b) Plot a single realization of the amplitude and phase process using a sampling rate of10 kHz for a time span of100

msec.
c) Calculate the average rate (in crossings per second) at which the fading amplitude crosses the level10 rms X (10 dB

below its rms level) in the positive going direction. Compare it with its theoretical value given in the class.
d) Calculate what fraction of the time the amplitude of your fading process is more than10dB below its rms value. That

is if X is the amplitude of the complex random process, what fraction of the time is

10 log
(

X2

X2
rms

)
< −10

Then measure this quantity based on the simulator and compare it with the theoretical value obtained in the class.

I will also create a computer program to generate realizations of a Rayleigh fading process based on the time domain method.
Start by creating a third order filter as described in the class. Use the same parameters as given in Frequency Domain Method.
Then present the following results:

a) Plot its autocorrelation function.
b) Repeat b, c, d from Frequency Domain method requirements.

II. PREVIOUS WORK

A. Frequency Domain Method

Firstly we should define the intended realization of the mobile fading channel’s observation window in time domain. i.e.,
represented asx(t), t ∈ (0, T ). By reproducingx(t) every T seconds to generate a period signal which has a fourier series
representation of the repeated signalx̃(t) =

∑n=∞
n=−∞ x(t− nT ) and PSD.

The fourier transform of̃x(t) is given by

x̃(t) =
∑

k

Xkejkωot (1)

and power spectrum density function (PSD) is given by

Sx̃x̃(f) =
∑

k

σ2
kδ(f − kf0) (2)

Your name is with xyz Department. . .
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whereσ2
k = E

⌊
|Xk|2

⌋
.

However theσ2
k can be chosen to shape aribitrary shape of desired PSD. In Modeling of Wireless Channels slice21, we

get the PSD of the Rayleigh fading channel is

Sxx(f) =
Px

π

1
fd

1√
1− (f/fd)

2
, |f | ≤ fd (3)

wherefd is the maximum doppler spread.
By selectingσ2

k taking form of 1√
f2

d
−(kf0)

2 to match the bathtub shape and let
∑

k σ2
k = 1 to satisfy the unit power

constraints.

B. Time Domain Method

Time domain method is supposed to create desired channel simulator by carefully designing a filter. We generate white
Gaussian process with zero mean and unit variance to pass through the filter, the autocorrelation of the output will be denoted
as

ΦXX(τ) = ΦNN (τ) ∗ h(τ) ∗ h(−τ) = h(τ) ∗ h(−τ) (4)

The rayleigh fading channel’s autocorrelation function is well known to beJ0(2πfdτ), the central point of time domain method
is to carefully design a filter whose autocorrelation function takes form asJ0(2πfdτ) as much similar as possible. If we use
3 order IIR filter for simulation, it can be constructed as one1-order and one2-order filter’s concatenation.

H1(s) =
ω0

s + ω0
,H2(s) =

ω2
0

s2 + 2ξω0s + ω2
0

and

H3(s) =
ω3

0

s3 + (2ξω0 + ω0)s2 + (ω2
0 + 2ξω2

0)s + ω3
0

(5)

The continous time filter can be mapped to discrete time filter by this transform

H3(z) = H3(s)|s=2fs

(
1−z−1

1+z−1

)
For 3-order transfer function

H3(z) =
X(z)
N(z)

=
b0 + b1z

−1 + b2z
−2 + b3z

−3

a0 + a1z−1 + a2z−2 + a3z−3

The coefficients are listed as follows
b0 = b3 = ω3

0 , b1 = b2 = 3ω3
0

a0 = 8f3
s + λ14f2

s + λ22fs + ω3
0

a1 = −24f3
s − λ14f2

s + λ22fs + 3ω3
0

a2 = 24f3
s − λ14f2

s − λ22fs + 3ω3
0

a3 = −8f3
s + λ14f2

s − λ22fs + ω3
0

λ1 = ω0(1 + 2ξ), λ2 = ω2
0(1 + 2ξ)

The 3-order filter can be realized as1-order and2-order system’s concatenation.

h3(t) =
∫ ∞

−∞
e−α(t−τ)u(t− τ)e−ατ sin(βτ)u(τ)dτ

= −e−αtu(t)(−1 + cos βt)
β

(6)

Thus corresponding autocorrelation function would take form as (Verified by Maple9.5)

h3(t) ∗ h3(−t) =
∫ ∞

−∞
h3(t + τ)h3(τ)dτ

=
e(−α|t|)(2β2 + cos(|t|β)β2 + 2α2 + 3β sin(|t|β)α− 2 cos(|t|β)α2

4α(4α2 + β2)(α2 + β2)
(7)

The autocorrelation in Fig.1 is drawn by takenα = 2πξf0, β = 2πf0

√
1− ξ2, hereξ = 0.175, f0 = 10Hz. The discrete

autocorrelation function is calculated by inverse Z transform ofH3(z) to geth(n), then computeh(n) ∗ h(−n).
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III. M ETHODOLOGY

A. Frequency Domain Method

a) The first step of frequency domain method is to determine the number of the frequency component to represent the
bathtub-shaped PSD. Herein we havefd = 100 Hz, fs = 10 kHz, T = 100 ms, f0 = 10 Hz. ThusM =

⌊
fd

f0

⌋
= 10.

We need to generate2M + 1 = 21 iid. complex Gaussian random variables with

E[Xk] = 0, E[|Xk|2] = σ2
k =

β√
f2

d − (kf0)
2

=
β√

(Mf0)
2 − (kf0)

2
(8)

The slope at(M − 1)f0 can be denoted as (M−1)β
f2
0 (2M−1)2/3 , thus the truncated value atMf0 should be

σ2
M =

β

f0

√
2M − 1

+
(M − 1)β

f0(2M − 1)3/2
=

β(3M − 2)
f0(2M − 1)3/2

(9)

Thus
k=M∑

k=−M

σ2
k = 2

M−1∑
k=1

β√
(Mf0)

2 − (kf0)
2

+
β(3M − 2)

f0(2M − 1)3/2

 +
β

Mf0

In order to unify the output power, we should chooseβ = 3.221615. We can use Matlab’s build-in function ofrandn to
generate zero mean, unit variance complex Gaussian distributed random variable. Here we generate2M + 1 = 21 iid.
Gaussian distributed random variables with varianceσ2

k respectively.
b) The sencond step is to sum up the complex random variables to form a random process for time interval(0, T ).

X(t) =
k=M∑

k=−M

Xkej2πk t
T (10)

Then we can sample atfs = 10kHz to get the desiredT/Ts = fs/f0 = 1000 samples.

X[i] = X(iTs) =
k=M∑

k=−M

Xkej2π ikTs
T (11)

B. Time Domain Method

a) Here we havefd = 100Hz, fs = 10kHz. The first step of time domain method is to determine the ARMA(3, 3)
system function. Substituteω0 = 2πfd/1.2 and ξ = 0.175 to the equations representing coefficients of numerator and
denominator.

b) Inverse Z transform ofH3(z) to get the time domain filter coefficientsh(n). We definen0 as |h(n0)|
maxn|h(n)| ≤ 0.01, we

will truncate infinite length IIR filter to FIR. By substitutingω0 ξ into the coefficients representation formular we get:

+0.1328287684e−1∗I∗(.9895688730−0.5104903619e−1∗I)n−0.1585969046e−1∗(.9895688730+0.5104903619e−1∗I)n

−0.1328287684e− 1 ∗ I ∗ (.9895688730 + 0.5104903619e− 1 ∗ I)n

, by checking Fig.3., the desiredn0 would around230.

c) NormalizeH(z) by let β2

√∑n=1000
n=0 h2(n) = 1 to have unit power or unify the autocorrelation sequenceh(n) ∗h(−n)

at n = 0, we getβ2 = 23.2838 .
d) Creat an input sequence with zero mean unit variance complex Gaussian distribution, the length isn0 and run the input

to the filter to get rid of any transients by using[YTrans, Zi] = filter(B,A, XTrans).
e) Generate the input sequence with number of100ms×10kHz =1000 zero mean unit variance complex Gaussian variables,

run through the filter and take the output as a single realization of the fading process. Note that we will use matlab
built-in filter function in way like:[Y, Zf] = filter(β2B,A, X, Zi).

C. Test of Fading Simulators

Theoretically speaking, the average number of times per second that the magnitudeα(t) of the fading process crosses some
thresholdρ/arms in positive going direction satisfy the following equation:

NR =
√

2πfdρe−ρ2
, arms =

√
E [a2] (12)
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The average period of time for which the received signal remains below a specified levelρ/arms should be

λ =
eρ2 − 1√
2πρfd

(13)

In this simulation, thearms = 1Watt, ρ would be1/
√

10, thusNR = 71.72 andλ = 0.13268%.
In my simulations, we sample atfs thus only get discrete sampling points. We define positive going accross predefined

threshold occurs iff.α(i) < Threshold, α(i + 1) ≥ Threshold. The average fade duration is calculated as consecutive sampling
points whoseα(i) < Threshold.

IV. RESULTS

A. Simulation Results

Figure 2 shows the frequency domain method withXkchanging simutaneously at every time instant and time domain
without eliminating filter delay’s impact on the output.We can see that for frequency domain method, the frequency component
is Gaussian distributed with corresponding variance, the values changes very quickly, actually I just draw a1000 point sampling
of a rayleigh distributed random process. Thus we only need generateXK once for the frequency domain method. For the
time domain method, we need to eliminate any transients.

The filter coefficients for its first1000-taps after inverse Z transform come out to be shown in following figure3:
It tells us we can estimate the filter if realized by FIR, the filter tap may as well deem as230-tap FIR filter if definen0 as
|h(n0)|

maxn|h(n)| ≤ 0.01. In my simulation, I choosen0 to be600.
The output of frequency domain method and time domain method’s autocorrelation and corresponding PSD are drawn in

the following figure4.
From above figure, we can clearly see both method get a similar performance.
The matlab code for these two simulations are listed as follows:

function FadingCH_simulator
clear all;
close all;
format long;
fd=100; % Doppler Rate
fs=10000; % Sampling Rate
T=0.1; % Observation Interval
f0=10; % Base Frequency
beta=1; % Normalized Factor
M=floor(fd/f0); % Rays in Positive Axis
num_sample=floor(T*fs); % Number of samples in the observation interval.
jj=sqrt(-1);
X=zeros(1,2*M+1); %Gaussian distributed frequency component
EX=zeros(1,2*M+1); % Expectations of sigma_k^2
Y=zeros(1,num_sample+1); %Output of a single realization of rayleigh fading channel
%Expectations of sigma_k^2
EX(M+1:2*M)=1./sqrt(fd^2-((0:M-1)*f0).^2);
EX(2*M+1)=(3*M-2)/(f0*(2*M-1)^(1.5));
EX(1:M)=EX(2*M+1:-1:M+2);
beta=1/sum(EX);
EX=beta*EX;
%Generate Gaussian Random Variables with variance of sigma_k^2.
X=sqrt(1/2)*(randn(1,2*M+1)+jj*randn(1,2*M+1));
X=X.*sqrt(EX); % Normalize to desired variance
for i=1:num_sample+1

Y(i)=sum(X.*exp(jj*2*pi*(i-1)*f0/fs*(-M:1:M)));
end
RMS_Y=20*log(sqrt(sum(Y.*conj(Y))/size(Y,2)));
omega0=2*pi*fd/1.2; %Filter Parameters
xi=0.175; %Filter Parameters
b0=omega0^3;
b3=omega0^3;
b1=3*omega0^3;
b2=3*omega0^3;
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lambda1=omega0*(1+2*xi);
lambda2=omega0^2*(1+2*xi);
a0=8*fs^3+lambda1*4*fs^2+lambda2*2*fs+omega0^3;
a1=-24*fs^3-lambda1*4*fs^2+lambda2*2*fs+3*omega0^3;
a2=24*fs^3-lambda1*4*fs^2-lambda2*2*fs+3*omega0^3;
a3=-8*fs^3+lambda1*4*fs^2-lambda2*2*fs+omega0^3;
B=[b0 b1 b2 b3];
A=[a0 a1 a2 a3];
TransientXIn=sqrt(1/2)*(randn(1,250)+jj*randn(1,250));
[TransientYOut,Zi]=filter(B,A,TransientXIn);
XIn=sqrt(1/2)*(randn(1,num_sample+1)+jj*randn(1,num_sample+1));
[YOut,Zf]=filter(B,A,XIn,Zi);
RMS_YOut=20*log(sqrt(sum(YOut.*conj(YOut))/size(YOut,2))); %RMS Calculation
YCount=0;
YOutCount=0;
for i=1:num_sample

if (20*log(abs(Y(i)))<RMS_Y-10)&(20*log(abs(Y(i+1)))>RMS_Y-10)
YCount=YCount+1;

end

if (20*log(abs(YOut(i)))<RMS_YOut-10)&(20*log(abs(YOut(i+1)))>RMS_YOut-10)
YOutCount=YOutCount+1;

end
end
YPeriod=0;
YOutPeriod=0;
i=1;
while (i<=(num_sample+1))

if (20*log(abs(Y(i)))<RMS_Y-10)
j=i;
while(i<=(num_sample+1))&(20*log(abs(Y(i)))<RMS_Y-10)

i=i+1;
end
YPeriod=YPeriod+i-j;

else
i=i+1;

end
end
i=1;
while (i<=(num_sample+1))

if (20*log(abs(YOut(i)))<RMS_YOut-10)
j=i;
while (i<=(num_sample+1))&(20*log(abs(YOut(i)))<RMS_YOut-10)

i=i+1;
end
YOutPeriod=YOutPeriod+i-j;

else
i=i+1;

end
end
figure(1);
grid on;
plot((0:num_sample)/num_sample*0.1,20*log(abs(Y)),’-’);
xlabel([’Time [sec] Level Cross Rate ’ num2str(YCount) ’/1001 times’
’Average Fade Duration ’ num2str(YPeriod/1001*100) ’%’]);
ylabel(’Magnitude [dB]’);
title(’Frequency Domain Method: A single realization of fading channel amplitude’);
figure(11);
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grid on;
plot((0:num_sample)/num_sample*0.1,20*log(abs(YOut)),’-’);
xlabel([’Time [sec] Level Cross Rate ’ num2str(YOutCount) ’/1001 times’
’Average Fade Duration 10dB below RMS ’ num2str(YOutPeriod/1001*100) ’%’]);
ylabel(’Magnitude [dB]’);
title(’Time Domain Method: A single realization of fading channel amplitude’);

V. CONCLUSIONS

In my fading channel simulator, both frequency domain method and time domain method work and output corresponding
single realization of rayleigh fading channel. The autocorrelation and corresponding PSD are drawn in Fig.4. The verification
purpose of cross level rate and average fade duration is calculated and further verifications needed to be done.
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Frequency domain Method: Frequency Component Shaping
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Fig. 1. PSD of Periodic Signals AutoCorrelation of3-order Filter (Continous Time and Discrete Time)
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Time Domain Method: A single realization of fading channel amplitude
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Frequency Domain Method: A single realization of fading channel amplitude
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Time Domain Method: A single realization of fading channel amplitude

Fig. 2. Frequency Domain Method WithXkChanging with time Time Domain Method without eliminating initial transients.

Frequency Domain Method withXk generating once and Time Domain Method with elliminating Transients.
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Frequency Domain Method: Output Autocorrelation
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Frequency Domain Method: Output PSD
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Time Domain Method: Output Autocorrelation
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Time Domain Method: Output PSD

Fig. 4. Frequency and Time Domain Method: Ouput’s autocorrelation and PSD


